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Abstract. The stress propagation in a concentrated attractive colloidal suspension under shear is studied
using numerical simulations. The spatial correlations of the intercolloidal stress field are studied and an
inertia-like tensor is defined in order to characterize the anisotropic nature of the stress field. It is shown
that the colloids remain in a liquid order, the intercolloidal stress is strongly anisotropic. A transition under
flow is observed: during a transient regime at low deformation, the stress propagates along the compression
direction of the shear, whereas at larger deformations, the stress is organized into layers parallel to the
(flow, vorticity) plane.

When subject to shear, concentrated colloidal suspen-
sions can organize into a wide variety of structures [1]. As
a consequence, they do not behave as simple Newtonian
fluids, and exhibit a rich phenomenology of macroscopic
rheological behaviors. For instance, in the low Péclet num-
ber regime, the Brownian contribution to the stress in-
creases slower than linearly with the shear rate, leading
to shear thinning behavior [2]. Also, at low deformation
rates, the viscosity of suspensions composed of attractive
colloid particles decreases with the increase of deformation
rate, due to the breakup of larger scale structures or align-
ment of the colloids parallel to the flow direction. On the
contrary, at high deformation rates, the viscosity rapidly
increases [3], or the suspension stops flowing [4–8]. It is
thought that the formation of reversible clusters is respon-
sible for this abrupt shear-thickening [10,11]. The jamming
shear rate decreases when the rugosity of the particles in-
crease, showing that contact stresses, including frictional
stress, play a key role in the jamming process [6, 9]. Un-
derstanding the relationship between the macroscopic rhe-
ological properties and the microstructure is a key chal-
lenge in the description of the flow of suspensions. Thus,
many experiments have been devoted to the measurement
of the positions of the colloids under shear, either in the
direct space [12] or in the reciprocical space [13]. Simu-
lations have also been used to measure the pair distribu-
tion function of strongly sheared suspensions [14–16]. One
then searches to compute the macroscopic properties, us-
ing either continuous medium [17–19] or molecular type
approaches [20]. Nevertheless, at high volume fractions
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and high shear rates, these approaches become increas-
ingly difficult, as stress is dominated by the lubrication
stress, localized between nearest colloids [10,21]. The con-
tribution of the lubrication forces to the total stress is a
function of the relative velocity of neighboring colloids.
Moreover, the stress is extremely heterogeneous spatially.
The situation is analogous to the case of granular suspen-
sions [22], for which stress propagates along force chains
that cannot be deduced from the grains positions knowl-
edge, as the force at contacts is a friction and depends on
the previous history of the grains.

In this article, we simulate the flow of a concentrated
colloidal suspension and show that, although the col-
loids exhibit a liquid ordering, the intercolloidal stress is
strongly anisotropic and heteregeneous. The colloids are
chosen to be highly attractive so that the suspension ag-
gregates at rest. As a consequence, “non-zero stress”, as
defned by stress growth experiments, is necessary to in-
duce the flow of the suspension: it possesses an apparent
yield stress [23]. We have shown in a previous study [24]
that this yield stress originates not only from stress ac-
cumulated between pairs of colloids pulled apart by the
flow but from stress accumulation between pairs of col-
loids aligned along the compression direction of the flow.
When the suspension is sheared at an intermediate shear
rate, the interactions between colloids are a combination
of hydrodynamics and interaction forces. We develop a
novel way of describing the microscopic stress field un-
der flow and introduce an inertia-like tensor to describe
its anisotropic nature. By comparing the statistical prop-
erties of the suspension density and of the intercolloidal
stress field at different stages of the flow, we show that
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Fig. 1. (Colour on-line) Illustration of the stress field construction. The system has been strained by a value γ = 0.067. Real
colloids whose center lies in a (v,∇vx) slice of thickness equal to the colloids diameter are represented in black. Stress spheres
belonging to the same slice are represented in color. The color code for the absolute value of the tangential stress supported by
these spheres is given by the side bar with green representing the greatest stress magnitude. In both cases, the particle sizes
correspond to the size of their intersection with the middle plane of the slice. Inset: definition of the compression quadrant of
the shear deformation: dark grey particles are pushed together by the deformation. On the opposite, light grey particles are
pulled apart.

concentrated colloidal suspensions possessing similar pair
distribution functions may exhibit very different stress
propagation mechanisms. We show that, as flow proceeds,
the stress propagation evolves from propagation along the
compression quadrant of the shear deformation (fig. 1 in-
set) towards propagation in a plane approximately parallel
to the flow direction.

We perform numerical simulation of the flow and use
the Dissipative Particle Dynamics [25] (DPD) technique
to model the flow of such suspension. DPD has been
shown to agree with Stokesian Dynamics simulations to
describe the flow properies of highly concentrated suspen-
sions [25–27]. This approach can roughly be thought of
as a Lagrangian formulation of Navier Stokes with ther-
mal fluctuations [28]. The DPD simulation is similar in
structure to molecular dynamics simulation but, instead
of modeling all the molecular properties of the system,
the motion of mesoscopic DPD particles that represent a
coarse-grained fluid are considered [25,29]. The DPD par-
ticles are subjected to conservative, dissipative and ran-
dom forces [30]

Fij = F
C
ij + F

D
ij + F

R
ij . (1)

The conservative force is a soft repulsive radial force
that decreases linearly with the center-to-center distance,
|ri − rj |, between the two DPD particles i and j, and
whose amplitude is chosen so that the compressibility of
the DPD fluid matches that of water. The dissipative force
is proportional to the difference of velocities between DPD
particles i and j, vi −vj , and acts to slow down their rel-
ative motion, producing a viscous effect. Lastly, a random
force is added that controls the temperature of the system.
The dissipative and random forces control the viscosity
of the fluid and, to maintain a well-defined temperature,
are related by the fluctuation-dissipation theorem [31]. In

contrast to the individual DPD particles, a colloid is then
defined as an assembly of constrained DPD particles so
that they form a rigid body.

The colloids are submitted to two additional forces.
The first one derives from an interaction potential. We
use a Derjaguin-type approximation of the Lennard-Jones
interactions [32] between colloid spheres A and B at short
distances. This potential scales as the sum of a hard-sphere
repulsion term, AHS/s7

AB and a van der Waals potential,
H/sAB , where AHS and H are constants related to the
hard-sphere potential and to the Hamaker constant re-
spectively, and sAB is the distance between the two col-
loids surfaces. The second additional force is a lubrication
force, explicitly computed from the relative surface mo-
tion of the colloids [25, 33, 35]. Both forces are modified
by a smoothing function so that a cut-off distance of the
order of the colloids radius is introduced, that prevents
the divergence of the energy. Details of the computation
of these forces are given in [24,25].

The colloidal particles are attractive, and in the ab-
sence of flow, the suspension evolves to form a colloidal
gel. We follow a well-defined preparation protocol of the
suspension. It is prepared by randomly placing the spheres
in a cubic cell, with small overlaps being possible. Then,
a repulsive force is applied between spheres if they over-
lap. Once all the spheres no longer overlap, the system is
allowed to equilibrate under the action of Brownian and
hydrodynamic forces. When a stable radial distribution
function is obtained, the van der Waals and lubrication
forces are introduced by turning them on slowly enough
so that the additional kinetic energy produced in the sys-
tem, because two spheres are too close to each other, is
allowed to dissipate. We choose the end of the introduc-
tion of the van der Waals and the lubrication forces as the
initial time of the system. Then, for a given waiting time,
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Fig. 2. (Colour on-line) Correlation field of the colloids positions, Cρ, (upper row) and of the intercolloidal tangential stress, Cσ,
(bottom row) after a deformation γ = 0.067. Slices of this correlation field along each plane (v,∇vx) (column (a)), (∇vx,∇×v)
(column (b)) and (∇×v,v) (column (c)) are given. The color code is given by the side bar. The three-dimensional stress surface
is plotted in (d). Here the translucency is adjusted to highlight the largest values of stress correlation.

the suspension is allowed to evolve towards a flocculated
colloidal gel. After this aging time, the shear is applied to
the sample.

The colloid’s radius is the only length scale explicitly
included in the description of the suspension. The param-
eters chosen for the simulation correspond to spherical
alumina colloids of approximately 100 nm diameter. The
interaction potential between two colloids exhibits a mini-
mum of 25kBT at a distance of 6 nm between the surfaces.
The time integration scheme for the DPD particles and the
colloids is based on a velocity-Verlet algorithm [25,36]. We
follow the motion of 9616 colloids whose volume fraction is
50%, under a deformation rate γ̇ = 2100 s−1, and for de-
formations ranging from 0 to 4. During flow, our system is
fully characterized by two non-dimensional numbers: the
Péclet number and a second number which gives the ratio
of the hydrodynamic force vs. the maximum force of in-

teraction. First, the Péclet number, Pe = 4πµγ̇a3

kBT
is equal

to 24 so that in this flow regime advection dominates over
diffusion. In this study, the deformation rate was chosen
so that the interactions between colloids remain impor-
tant, and the system is not dominated by pure hydro-
dynamic interactions. A second non-dimensional number
may be built, 6πμa2γ̇/Fmax, where a is the radius of the
colloids, Fmax the maximum attractive force between col-
loids and μ is the fluid viscosity. Its value is 0.044 in this
study indicating that the interparticle interactions is still
dominant over hydrodynamic forces. Further, the values
of non-dimensional parameters chosen in this study also
correspond to suspensions of larger size, such as 1 μm col-
loids under a shear rate equal to 2.1 s−1, with a minimum
interaction potential equal to 2.5kBT .

In order to describe the transmission of stress through-
out the suspension we need to first identify neighbor-
ing colloids in close contact. In our simulations, it was
observed that whatever the deformation value, the pair
distribution function exhibits a well-defined peak at con-

tact [24]. We identified the colloids in contact as those
whose surface-to-surface distance is smaller than the
width of the first peak of the pair distribution function.
Given the set of spheres in contact, we construct a dual
space of spheres that are placed at the midpoint between
the centers of neighboring colloids in contact (fig. 1). Then
each dual sphere is assigned the stress in the continuous
medium at the contact point. When defined over length
scales shorter than colloid-colloid interactions, the micro-
scopic stress tensor is ambiguously defined [37]: it is nec-
essary to define pairs of colloids that do contribute to the
stress onto the small surface considered. Irving and Kirk-
wood chose to consider only pairs of colloids whose center-
to-center segment crosses the considered small surface [38],
whatever their distance. In our case, we are interested in
the value of the stress contact points between pairs of col-
loids. Both the lubrication and the potential part of the
stress diverges when colloids come closer, and the stress
is dominated by the two colloids in contact. Hence, we
only consider the contribution of the stress arising from
colloids with pair-wise contacts. This dual space is chosen
as it emphasizes the role of the intercolloidal stress, and
allows for computation of the stress correlation, from col-
loid to colloid, throughout the suspension. The minimum
length of stress propagation is equal to the diameter of
the colloids, so we chose this length as the diameter of the
stress spheres. Although this choice is in part arbitrary,
we feel that it is representative of the mechanism of stress
propagation. It brings out the continuity of the stress (two
diametrically opposite points of contact lead to two touch-
ing stress spheres) without reducing the continuity of the
structure. We obtain the stress field between colloids in
pair-wise contact in the suspension, σxy(r). Due to the
presence of a large number of contacts, the volume frac-
tion of the stress spheres is observed to be higher than the
volume fraction of the colloids, and they may overlap. In
that case, we chose to add the stresses in the overlapping
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Fig. 3. Radial correlation of the colloids positions, in each
plane (v,∇vx), (∇vx,∇×v) and (∇×v,v) for a deformation
γ = 0.067.

region. We compute the spatial correlation of this stress
field

Cσ(u) =
〈σxy(r)σxy(r + u)〉r

〈σxy(r)2〉r
, (2)

where u is a translation vector and 〈...〉r is the average over
space. To compare the stress field properties with the col-
loids organization under flow, we also define the colloids
position correlation, Cρ(u), where σxy is replaced by the
local density, ρ, whose value is 1 inside a colloid and 0 out-
side. After a small deformation value, the colloids exhibit
liquid ordering (fig. 3), whereas the stress correlation is
anisotropic (fig. 2).

Indeed, whatever the position of the translation vector
u relative to the flow direction, the correlation pattern of
the colloids positions exhibit a liquid pattern, character-
ized by a series of circular fringes of decreasing amplitudes
(fig. 2a,b,c upper row) [39]. The stress correlation pos-
sesses several remarkable features (fig. 2a,b,c lower row):

– it is mainly oriented along the compression direction
of the shear flow, in the (v,∇vx) plane,

– the stress possesses a long-range correlation length
(larger than the stress sphere size), in all the spatial
directions.

The first observation is in agreement with our previous
study of a similar system at the onset of flow [24], where
we showed that, at small deformations and for concen-
trated suspensions, the stress needed to make the suspen-
sion flow is stored in intercolloidal contacts oriented along
the compression direction of the shear. Our analysis here
shows moreover that long-range correlation of the stress
is observed in the compression quadrant (fig. 4, square
symbol).

Then, as flow proceeds, the excess of correlation in
the compression quadrant is lost and anticorrelation of
the stress is observed in the ∇vx direction, at a distance
2r (fig. 4, image (b)). This anticorrelation progressively
develops and we reach a stationary regime in which the

Fig. 4. (Colour on-line) Shear stress as a function of the strain.
Stress correlation surfaces Cσ along the (∇× v,v) plane (up-
per images) and along the (v,∇vx) plane (lower images) are
represented, for three different deformation values: γ = 0.09,
γ = 0.46 and γ = 1.4. The square and the triangle correspond
to the stress/deformation values of the correlations plotted in
fig. 2 and fig. 6, respectively. The color code for the absolute
value of the tangential stress supported by these spheres is
given by the side bar of Fig. 2.

stress correlation is highly anisotropic, and most of the
correlation is observed along the (v,∇× v) plane (fig. 4,
image (c)). This progressive buildup of anisotropy of the
stress propagation in the suspensions may be character-
ized by considering the correlation volume as a solid body
weighted by the correlation value of the stress tensor. We
define the inertia tensor of the stress correlation field

Jσ =

∫∫∫

Cσ(u)
(

u2
I − u ⊗ u

)

d3
u. (3)

We then diagonalize this tensor and define λ1 ≤ λ2 ≤ λ3

its three eigenvalues and u1, u2 and u3 the corresponding
eigenvectors. We define ǫ = λ3/λ1 and ρ = λ3/λ2. For a
perfect disk shape, we would have ǫ = 2 and ρ = 1. At
initial deformations, the shape of the stress correlation is
isotropic and λ1 ≃ λ2 ≃ λ3, so that ǫ ≃ 1 and ρ ≃ 1.
Then, when deformation proceeds, the disk shape devel-
ops: ρ fluctuates around 1 and the anisotropy factor ǫ pro-
gressively increases (fig. 5(a)). At the highest deformation
reached by our simulations, the asymptotic value of ǫ is
not yet reached. Conversely, the stress correlation volume
becomes anisotropic and rapidly orientates parallel to the
flow: the angle φ of the eigenvector of lowest eigenvalue
fluctuates very rapidly at short deformations and then,
after a characteristic deformation γc ≃ 0.8, tends towards
0 (fig. 5(b)). The propagation of stress no longer occurs
in the compression quadrant of the deformation, but in
a plane parallel to the flow direction, corresponding to
φ = 0. This stress propagation cannot be explained by the
underlying organization of the colloids, as no layering (or
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Fig. 5. (a) Evolution of the ratio of the eigenvalues of the inertia-like tensor (defined by 3) of the stress correlation volume,
considered as a weighted solid body (ǫ: solid line, ρ: dashed line). (b) Angle φ of the main axis of rotation of the stress
correlation volume as a function of the deformation (solid line). The dashed line is an exponential fit to the data, φ = φ0e

−γ/γc .
A representative 3-D surface of the stress correlation field (at γ = 2.28) and the definition of the Euler angle φ are given in the
inset.

Fig. 6. (Colour on-line) Correlation field of the colloids po-
sitions (upper row) and of the intercolloidal tangential stress
(bottom row) after a deformation γ = 2.28. Slices of this corre-
lation field along each plane (v,∇vx) (column (a)), (∇vx,∇×

v) (column (b)) and (∇× v,v) (column (c)) are given.

at best very weak layering) is exhibited in their organiza-
tion (fig. 6 upper row, fig. 7 and fig. 8(a)). It can neither
be due solely to the organization of the contact spheres
(fig. 8(a)). Their spatial organization is more heteroge-
neous than the colloids themselves and regions of char-
acteristic dimension of the order of 2–3 colloids do exist
in which no contact is observed (fig. 8(b)). Nevertheless,
these regions are not oriented along the flow and do not
exhibit any spatial heterogeneity. Thus, the weighting of
the contact network by local stresses is responsible for the
excess of stress correlation along a plane normal to the
gradient velocity of the flow.

Looking closely at the stress correlation field in the
(v,∇ × v) plane, we observe that the stress correlation
does not exhibit a monotonic decay along this plane,
but possesses several maxima. Correlation maxima at dis-

Fig. 7. Radial correlation of the colloids positions, in each
plane (v,∇vx), (∇vx,∇×v) and (∇×v,v) for a deformation
γ = 2.28.

tances much larger than a single stress sphere diameter are
observed (fig. 4, α to γ). This fine structure exhibits two
striking properties: the stress correlation maxima some-
times present a transient 6-fold symmetry, and they very
rapidly evolve under flow over deformations smaller than
a strain of 0.01. These observations are consistent with the
experimental observation of rapid stress fluctuations [5,7],
and show that fragile stress paths do form in colloidal sus-
pensions [40]. These paths are not oriented along the com-
pression direction of the deformation, but along a plane
parallel to the flow direction. Moreover, albeit the colloids
do not crystallize under flow (fig. 6(a) to (c)), these stress
paths exhibit a transient hexagonal symmetry. Thus, the
properties of stress propagation are not reflective of the or-
ganization of the colloids, but of the underlying network
of neighboring colloids that support stress propagation.
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Fig. 8. Centers of colloids (a), respectively, of stress spheres (b), in a (v,∇vx) slice of thickness 10, respectively, 2, colloid
diameters, after the deformation γ = 2.28.

This network is strongly anisotropic and it very rapidly
fluctuates under flow.

To understand the rheological properties of a concen-
trated colloidal suspension, it is necessary to make a link
between the microscopic behavior and the macroscopic
properties which can depend on the colloidal interactions.
At small strains there was a significant amount of stress
transmitted in compression (fig. 2(a)). This is a conse-
quence of the microstructure reorganizing from the ini-
titial isotropic colloidal network to one associated with
the dynamic equilibrium of an anisotropic flow at later
stages [24]. At the small strains there is an accompany-
ing sharp rise in stress (fig. 4) which is often seen in stress
growth curves. The peak of the stress growth is sometimes
associated with the yield stress of the fluid. However, this
yield stress is a function of shear rate and appears to go
to zero with decreasing shear rate due to thermal fluctu-
ations. At higher strains, scattering experiments [13] and
numerical simulations [41,42] of hard-spheres suspensions
do not show order under flow. On the opposite, respulsive
particles can present flow ordering [34]. Here, by studying
a system of strongly aggregated particles under flow, we
have shown that, although particles do not exhibit lay-
ering (or very little layering) along the flow, the stress
pattern is strongly anisotropic. In this regime of small in-
terparticle distances, the stresses between adjacent col-
loids dominates the rheological response. We have chosen
to emphasize the intercolloidal stress field, but other com-
plementary fields may be needed to more fully describe
the flow. Examples could be the complete stress field (not
only between pairs of colloids in contact), or the velocity
field of the colloids which may be experimentally easier to
measure.
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